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ABSTRACT
Session-based Recommendation (SBR) refers to the task of pre-

dicting the next item based on short-term user behaviors within

an anonymous session. However, session embedding learned by

a non-linear encoder is usually not in the same representation

space as item embeddings, resulting in the inconsistent prediction

issue while recommending items. To address this issue, we pro-

pose a simple and effective framework named CORE, which can

unify the representation space for both the encoding and decoding

processes. Firstly, we design a representation-consistent encoder

that takes the linear combination of input item embeddings as ses-

sion embedding, guaranteeing that sessions and items are in the

same representation space. Besides, we propose a robust distance

measuring method to prevent overfitting of embeddings in the

consistent representation space. Extensive experiments conducted

on five public real-world datasets demonstrate the effectiveness

and efficiency of the proposed method. The code is available at:

https://github.com/RUCAIBox/CORE.
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1 INTRODUCTION
Session-based Recommendation (SBR) aims to capture short-term

and dynamic user preferences according to user behaviors (e.g.,
clicked items) within anonymous sessions, which is an important

research topic in recommender systems [23]. Recent SBR methods

usually follow the encoder-decoder framework and focus on design-

ing effective neural architecture as encoder, such as Recurrent Neu-

ral Network (RNN) [8, 13, 17], Transformer [1, 7, 11, 21, 28, 33, 34]

and Graph Neural Network (GNN) [3, 16, 26, 29]. As for the decoder,

a widely adopted way is to calculate dot product of session and

item embeddings as the interaction probability of the next item.

In line with the focus of the above-mentioned efforts, we notice

that session embeddings are not usually in the same representa-

tion space as item embeddings. Generally speaking, user behaviors

within a short session tend to share a common focus [3]. In session-

based recommendation, session embeddings are expected to reflect

users’ short-term preference and should be similar to embeddings

of preferred items. However, as shown in Figure 1(a), when item em-

beddings are encoded by non-linear neural networks, the resulting

session embedding doesn’t necessarily fall into the space spanned

by bases of item embeddings, and thus it may become unable to

concisely represent user’s preference. For example, as illustrated in

Figure 1(b), for sessions with a common objective (item 𝑎 clicked

multiple times for simulation), we observe that their embeddings

that encoded by non-linear encoder (e.g., GRU4Rec [8]) fall into
different points in embedding space, giving inconsistent prediction

when calculating similarities to item embeddings.

Considering the above issues, we strive to unify the represen-

tation space for both encoding and decoding processes in session-

based recommendation. The basic idea is to represent sessions in

the item embedding space, for example, by directly summing up

item embeddings within the session. However, in this way, we fail

to model the sequential nature, which can be captured by neural
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Figure 1: (a) Encoder-decoder framework of most existing
session-based recommendation models and (b) Inconsistent
prediction issue while measuring the distance between em-
beddings for recommending.

encoders like RNNs. Thus we consider overcoming two key chal-

lenges. (1) How to design a more suitable encoder, so that we can

take advantage of deep non-linear neural networks’ immense capa-

bility, given that session and item embeddings share a consistent

representation space. (2) Once the representation space is unified

and item embeddings are directly involved in score calculation

and model optimization, how to measure the distance between

embeddings to avoid overfitting of item embeddings?

To this end, we propose a rather simple yet effective framework

for session-based recommendation, where session embeddings and

item embeddings are in COnsistent REpresentation space, namely

CORE. Firstly, we encode session embeddings as the linear com-

bination of item embeddings within the session, ensuring the en-

coded embedding has a consistent representation space as item

embeddings. The weight of each item in the session is learned via

a deep non-linear neural network to incorporate various of induc-

tive biases, such as order and importance of items. Secondly, we

revisit the widely adopt dot product distance measuring in the per-

spective of optimizing tuplet loss and improve the robustness of

distance measuring from multiple aspects. Extensive experiments

on five public datasets demonstrate the effectiveness and efficiency

of the proposed framework. We also show that performances of

existing session-based recommendation models can be significantly

improved by the proposed techniques.

2 METHODOLOGY
In this section, we introduce the proposed framework CORE, a

simple and effective framework for session-based recommendation

within consistent representation space. Figure 2 presents the overall

architecture of CORE.

Now, we start with a brief description of the typical session-based

recommendation, which follows an encoder-decoder framework.

Firstly, each item is embedded into an unified embedding space.

𝒉𝑖 = Emb(𝑣𝑖 ) ∈ R𝑑 denotes the item embedding for item 𝑣𝑖 , where

Emb(·) is the item embedding look-up table and 𝑑 is the dimension

of vectors. Then we have 𝒉𝑠 = Encoder( [𝒉𝑠,1, . . . ,𝒉𝑠,𝑛]) ∈ R𝑑 to

encode a session 𝑠 with 𝑛 items, where Encoder(·) is usually a

non-linear neural network. Finally, we can predict the probability

Session Next Item Other Items

Item Embedding Table

DNNs 

+
-

Representation- 
Consistent 
Encoder

Robust Distance
Measuring

Dropout  

Figure 2: Overall framework of CORE.

distribution for the next item, i.e., �̂� = Decoder(𝒉𝑠 ) ∈ R𝑚 , where

𝑚 is the number of all items.

2.1 Representation-Consistent Encoding
Here we aim at encoding sessions into item embedding space to

overcome the inconsistent representation space issue. As most exist-

ing encoders adopt a non-linear encoder (e.g., RNNs or Transform-

ers) directly stacked over the input item embeddings, the encoded

session embeddings are not in the same representation space as

items. In order to keep embeddings within the same space, a natural

idea is whether we can remove non-linear activation functions over

item embeddings and encode sessions as the linear combination of

item embeddings.

Along this line, we propose a Representation-Consistent Encoder

(RCE), whose output session embedding is the weighted summa-

rization of item embeddings within a session. Linear combination

guarantees the session embeddings are always in the same embed-

ding space as items. Although non-linear layers are removed be-

tween the encoded session embedding and input item embeddings,

they are essential to incorporating inductive biases and learning

weights for input item embeddings. Formally, we apply arbitrary

deep neural networks to learn weights for each item embedding in

a session,

𝜶 =DNN( [𝒉𝑠,1;𝒉𝑠,2; . . . ;𝒉𝑠,𝑛]), (1)

𝒉𝑠 =
𝑛∑︁
𝑖=1

𝛼𝑖𝒉𝑠,𝑖 , (2)

Then we give two detailed implementations of DNN without care-

fully designed architecture.

2.1.1 Learning Weights via Mean Pooling. This variant adopts a
mean pooling layer as DNNs, i.e., 𝛼𝑖 = 1

𝑛 . This variant ignores the

order of items in a session, as well as the importance of each item.

2.1.2 Learning Weights via Transformer. In this variant, we utilize

𝐿-layers self-attention blocks like SASRec [11] as DNNs.

𝑭 = Transformers( [𝒉𝑠,1;𝒉𝑠,2; . . . ;𝒉𝑠,𝑛]), (3)



Table 1: Overall performance comparison on five datasets. “∗” indicates the statistical significance for 𝑝 < 0.01 compared to
the best baseline method with paired 𝑡-test. Sessions are split into train/validation/test set in a ratio of 8:1:1 for fair evaluation.
We indicate performances of FPMC on Yoochoose as “−” due to the OOM issue.

Dataset Metric FPMC GRU4Rec NARM SR-GNN NISER+ LESSR SGNN-HN SASRec GC-SAN CL4Rec CORE-ave CORE-trm Improv.

Diginetica

R@20 31.83 45.43 47.68 48.76 51.23 48.80 50.89 49.86 50.95 50.03 50.21 52.89* +3.24%

M@20 8.79 14.77 15.58 16.93 18.32 16.96 17.25 17.19 17.84 17.26 18.07 18.58* +1.42%

Nowplaying

R@20 10.18 13.80 14.17 15.28 16.55 17.60 16.75 20.69 18.30 20.59 20.31 21.81* +5.41%

M@20 4.51 5.83 6.11 6.10 7.14 7.13 6.13 8.14 8.13 8.21 6.62 7.35 −

RetailRocket

R@20 46.04 55.32 58.65 58.71 60.36 56.22 58.82 59.81 60.18 59.69 59.18 61.85* +2.47%

M@20 21.95 33.18 34.69 36.42 37.43 37.11 35.72 36.03 36.85 35.95 37.52* 38.76* +3.55%

Tmall

R@20 20.30 23.25 31.67 33.65 35.97 32.45 39.14 35.82 35.32 35.59 44.67* 44.48* +14.13%

M@20 13.07 15.78 21.83 25.27 27.06 23.96 23.46 25.10 23.48 25.07 31.85* 31.72* +17.70%

Yoochoose

R@20 − 60.78 61.67 61.84 62.99 62.89 62.49 63.55 63.24 63.61 58.83 64.61* +1.57%

M@20 − 27.27 27.82 28.15 28.98 28.59 28.24 28.63 29.00 28.73 25.05 28.24 −

where 𝑭 ∈ R𝑛×𝑑′
and 𝑑 ′ is the output dimension of feed forward

network of the last layer of self-attention blocks. Then we can

obtain the normalized weights 𝜶 ∈ R𝑛 ,

𝜶 = softmax(𝒘 · 𝑭⊤), (4)

where𝒘 ∈ R𝑑′
are learnable parameters. This variant captures the

sequential nature via positional encoding technique in Transformer.

2.2 Robust Distance Measuring for Decoding
As sessions are encoded as linear combination of item embeddings

and decoded by measuring the distances to items in embedding

space, item embeddings are directly involved in the distance cal-

culation between embeddings, leading to a high risk of overfitting.

Thus we seek a robust way to measure the distance in the unified

representation space to prevent overfitting. By reviewing the widely

adopted dot product distance, we have the following lemma:

Lemma 1. Given a session embedding 𝒉𝑠 and item embeddings
{𝒉𝑣 |𝑣 ∈ V}, when dot product is used to measure the embedding
distance, optimizing cross entropy loss is approximately proportional
to optimize (𝑁 − 1)-tuplet loss [19] with a fixed margin of 2.

Proof. The lemma can be proved by rewriting the original loss

function as,

ℓori = − log

exp(𝒉𝑠 · 𝒉𝑣+ )∑𝑚
𝑖=1 exp(𝒉𝑠 · 𝒉𝑣𝑖 )

= log

1 + (|V| − 1)
∑︁

𝑣−∈V\{𝑣+ }
exp(𝒉𝑠𝒉𝑣− − 𝒉𝑠𝒉𝑣+ )

 ,
≃(|V| − 1)

∑︁
𝑣−∈V\{𝑣+ }

exp(𝒉𝑠𝒉𝑣− − 𝒉𝑠𝒉𝑣+ )

≃(|V| − 1)
∑︁

𝑣−∈V\{𝑣+ }
(𝒉𝑠𝒉𝑣− − 𝒉𝑠𝒉𝑣+ + 1),

∝
∑︁

𝑣−∈V\{𝑣+ }

(
∥𝒉𝑠 − 𝒉𝑣+ ∥2 − ∥𝒉𝑠 − 𝒉𝑣− ∥2 + 2

)
.

where𝑚 denotes the number of items, 𝑣+ denotes the ground-truth

next item for session 𝑠 . □

Table 2: Statistics of the datasets.

Dataset # Interactions # Items # Sessions Avg. Length

Diginetica 786,582 42,862 204,532 4.12

Nowplaying 1,085,410 59,593 145,612 9.21

RetailRocket 871,637 51,428 321,032 6.40

Tmall 427,797 37,367 66,909 10.62

Yoochoose 1,434,349 19,690 470,477 4.64

Given the above lemma, we consider improving the robustness

of distance measuring in three aspects. Firstly, data distributions

for different recommendation scenarios may vary a lot, and a fixed

margin is inappropriate. Thus, we replace the fixed margin 2 by a

controllable hyper-parameter 𝜏 to suit different scenarios. Secondly,

we utilize Dropout [20], a widely adopted technique for robust

training, directly over candidate item embeddings. Thirdly, inspired

by recent advances in Contrastive Learning [2, 6, 14], we propose

to measure the distance via cosine distance for better alignment

and uniformity of item embeddings [24]. Then we design the loss

function with the proposed Robust Distance Measuring (RDM)

technique as,

ℓ = − log

exp

(
cos(𝒉𝑠 ,𝒉′𝑣+ )/𝜏

)
∑𝑚
𝑖=1 exp

(
cos(𝒉𝑠 ,𝒉′𝑣𝑖 )/𝜏

) , (5)

where 𝒉′ denotes the item embeddings with dropout.

3 EXPERIMENTS

Datasets and evaluation metrics. We conduct experiments on

five public datasets collected from real-world platforms: Diginetica,
Nowplaying, RetailRocket, Tmall and Yoochoose with their statistics

shown in Table 2. We filter out sessions of length 1 and items

appearing less than 5 times across all datasets [3, 13, 26], and split

the sessions in each dataset into train/validation/test set in temporal

order in a ratio of 8:1:1 [31]. To evaluate the performance of different

methods, we employ two widely-used metrics, top-20 Recall (R@20)

and top-20Mean Reciprocal Rank (M@20) [26, 30].
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CORE-ave on Diginetica.

Baselines. To evaluate the performance of the proposed method,

we compare it with the following representative baselines: (1)

Matrix factorization based methods: FPMC [18]; (2) RNN-based

methods: GRU4Rec [8] and NARM [13]; (3) GNN-based meth-

ods: SR-GNN [26], NISER+ [5], LESSR [3] and SGNN-HN [15].

(4) Transformer-based methods: SASRec [11], GC-SAN [29] and

CL4Rec [28]. Note that we don’t take methods that introduce addi-

tional collaborative filtering information [4, 10, 25, 27] or other side

features [9] as baselines. For CORE, we implement two simple vari-

ants using mean pooling (Sec. 2.1.1) and Transformers (Sec. 2.1.2)

as DNNs in Eqn. (1), namely CORE-ave and CORE-trm, respectively.

Implementation details The proposed models and all the base-

lines are implemented based on a popular open-source recommen-

dation library RecBole1 [32] and its extension RecBole-GNN2 for
easy development and reproduction. The dimension of the latent

vectors is fixed to 100, and each session is truncated within a maxi-

mum length of 50. We optimized all the compared methods using

Adam optimizer [12] with a learning rate of 0.001, and adopted

early-stop training if the M@20 performance on the validation set

decreased for 5 consecutive epochs. We use a batch size of 2048 for

all methods (except TAGNN, for which we use 100 due to the large

memory consumption). Other hyper-parameters of baselines are

carefully tuned following the suggestions from the original papers

and we report each performance under its optimal settings. For

CORE, we apply a grid search for controllable margin 𝜏 among

{0.01, 0.05, 0.07, 0.1, 1} and dropout ratio 𝜌 among {0, 0.1, 0.2}. We

finally report metrics on the test set with models that gain the

highest performance on the validation set.

Overall comparison. From the experimental results in Table 1,

we can observe: CORE outperforms all the baselines significantly

over 8 of 10 metrics on the adopted five datasets. Different from

these baselines, CORE doesn’t apply non-linear layers over item

embeddings to encode sessions, but learns weights for each item

embedding and adopts a weighted sum for encoding session em-

beddings and item embeddings in consistent representation space.

1
https://recbole.io

2
https://github.com/RUCAIBox/RecBole-GNN

Table 3: Ablation study ofCORE’s variants onDiginetica and
RetailRocket.

Method

Diginetica RetailRocket

R@20 M@20 R@20 M@20

CORE 52.89 18.58 61.85 38.76
w/o RCE 49.82 17.41 59.59 36.27

w/o RDM 52.31 18.38 60.93 37.72

SASRec 49.86 17.19 59.81 36.03

Table 4: Performance comparison of different methods and
their improved variants on two datasets.

Method

Diginetica RetailRocket

R@20 M@20 R@20 M@20

NARM 47.68 15.58 58.65 34.69

+ RCE 51.86 18.27 60.77 37.01

+ RDM 51.62 17.79 61.33 37.11

+ All 52.51 18.58 62.19 38.84

SR-GNN 48.76 16.93 58.71 36.42

+ RCE 49.51 17.53 57.05 35.70

+ RDM 51.36 18.57 61.41 38.27

+ All 52.38 18.95 61.43 38.38

Besides, notice that CORE-ave considers neither item order in a

session, nor item importances. However, it still outperforms all the

baselines on 3 metrics, while gaining comparable results with sev-

eral strong baselines on other metrics. Without carefully designed

encoder architecture, CORE can achieve impressive performance,

which further confirms the importance of encoding session embed-

dings and item embeddings in consistent representation space.

Analysis 1: Efficiency. In Figure 3, we plot the performance of

several popular session-based recommendation models as well as

CORE-trm over their training time per epoch relative to that of

CORE-ave on the Diginetica dataset. We measure the training time

on an NVIDIA TITAN V GPU. As we can see, CORE-ave is the

fastest while achieving competitive performance. By applying mean

pooling over sessions, CORE-ave minimizes memory usage and

only learns a single item embedding table during training. CORE-

trm has a similar training time as SASRec while achieving the best

performance among the compared baselines.

Analysis 2: Ablation study. CORE involves several components

(i.e., RCE and RDM) and we now analyze how each part contributes

to the performance. As SASRec and CORE-trm (CORE for simplify)

shares the same Transformer architecture, we select SASRec as the

base model to compare. We mainly consider the following vari-

ants: CORE w/o RCE means replacing representation-consistent

encoder of CORE to SASRec’s encoder; CORE w/o RDM means

replacing the proposed robust distance measuring techniques to

the traditional dot product distance; In Table 3, we can observe that

the performance order can be summarized as CORE > CORE w/o

https://recbole.io
https://github.com/RUCAIBox/RecBole-GNN
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Figure 4: Visualization of learned session embeddings.

RDM > CORE w/o RCE ≃ SASRec. These results indicate that all

the parts are useful to improve the final performance.

Analysis 3: Improving existing methods with RCE & RDM.
Here we slightly modify several popular existing session-based

models, showing how the proposed components RCE and RDM

improve the performances of existing methods.

Take SR-GNN [26] + RCE as an example, the original encoder can

be formulated as 𝒉𝑠 =𝑾 [𝒉𝑠,𝑛 ;𝒉𝑔], where𝑾 ∈ R𝑑×2𝑑 are learnable

parameters and 𝒉𝑔 can be seen as the linear combination of item

embeddings within a session. Then we remove𝑾 and change the

encoder to 𝒉𝑠 = (𝒉𝑠,𝑛 + 𝒉𝑔)/2 and the modified SR-GNN encoder

is a variant of the proposed RCE, where the session embedding is

linear combination of item embeddings.

Performance comparison between existing works (NARM [13]

and SR-GNN [26]) and their improved variants are shown in Table 4.

We can see that generally the combination of RCE and RDM can

gain dramatic performance improvements compared to the original

models. As for only adding one of the proposed techniques, RDM

consistently improve the performance, while RCE has a positive

effect in most cases.

Analysis 4: Visualization of session embeddings. To show the

effectiveness of the proposed model CORE, we visualize the learned

session embeddings using t-SNE [22] algorithm in Figure 4. Detailed,

sessionswith the same next item are viewed as in the same class, and

are marked the same color. We randomly sample 15 items as ground

truth next items. Then we extract all the corresponding sessions

from our test set in Diginetica. We can see that different classes’

session embeddings learned by CORE are well separated from each

other compared to those learned by GRU4Rec and SASRec.

Analysis 5: Parameter tuning. At last, we exime the impact of

several importance parameters towards CORE, i.e., the margin 𝜏 and

the dropout ratio 𝜌 . In particular, we vary 𝜏 in {0.01, 0.02, . . . , 0.1}
and present the results in Figure 5 (a) and Figure 5 (b). Our method

constantly outperforms the best baseline, and achieves the best

performance when 𝜏 = 0.07 on Diginetica and 𝜏 = 0.08 on Retail-

Rocket. Overall, the performance is stable around 0.04 ≤ 𝜏 ≤ 0.08.

Next, we vary 𝜌 in the range 0 and 0.5 with steps of 0.1. As shown

in Figure 5 (c) and Figure 5 (d), when 𝜌 ≤ 0.3, the item dropout

increases the robustness of item embedding learning, while a large

ratio of item dropout may hurt the performance, as we can see, the

performance decreases sharply when 𝜌 > 0.3.
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Figure 5: Parameter tuning of CORE on Diginetica and Re-
tailRocket datasets.

4 CONCLUSION
In this paper, we propose CORE, a simple and effective framework

for session-based recommendationwithin consistent representation

space, which unifies the representation space throughout encod-

ing and decoding to overcome the inconsistent prediction issue.

Different from stacking multiple non-linear layers over the item

embeddings, we propose to just apply weighted sum for item em-

beddings to encode sessions in the consistent representation space

as items. Besdies, we propose robust distance measuring techniques

from multiple aspects to prevent overfitting of item embeddings

in the proposed framework. Extensive experiments on five public

datasets have shown the effectiveness and efficiency of the pro-

posed approach, as well as how the proposed techniques can help

existing methods.

For future work, we will consider studying the expressive ability

of the proposed representation-consistent encoder both theoreti-

cally and empirically. Besides, we will explore how to introduce side

features and useful inductive biases to the proposed framework.
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